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ARTICLE INFO ABSTRACT

Keywords: This paper focuses on implementation of a general canonical primal-dual algorithm for
Global optimization solving a class of fourth-order polynomial minimization problems. A critical issue in the
Ca“omca} dual 3150f'Fhm canonical duality theory has been addressed, i.e., in the case that the canonical dual prob-
Polynomial optimization lem has no interior critical point in its feasible space S}, a quadratic perturbation method is

introduced to recover the global solution through a primal-dual iterative approach, and a
gradient-based method is further used to refine the solution. A series of test problems,
including the benchmark polynomials and several instances of the sensor network locali-
zation problems, have been used to testify the effectiveness of the proposed algorithm.
Crown Copyright © 2013 Published by Elsevier Inc. All rights reserved.

1. Introduction

Polynomial optimization problems have been studied extensively with a wide range of applications in science and engi-
neering, including chaotical dynamical systems, chemical database analysis, computational large deformation mechanics,
network communication, and information science, etc. [6,9,10,12,13,17,18,21]. It is known that the minimization of a poly-
nomial function on R" is difficult even for fourth-order polynomials. Various methods have been presented to solve this kind
of problems. By considering the first order conditions, algebraic techniques can be used for determining the real solutions to
this system of polynomial equations; however, it is computationally expensive and the number of critical points can be infi-
nite sometimes. Perturbation and relaxation techniques have attracted a lot of attention from diverse directions in recent
decades. In [9], by perturbing the original polynomial based on even-order and combining it with semidefinite programming,
a semidefinite approximation method was proposed for global unconstrained polynomial optimization. Semidefinite pro-
gramming (SDP), second-order cone programming (SOCP) and sum of squares (SOS) relaxations are some of the most pop-
ular methods studied recently. The sequences of generalized Lagrangian dual and their SOS were introduced in [10]. In [18],
based on the correlative sparsity pattern graph, sets of supports for sums of squares polynomials that lead to efficient SOS
and SDP relaxations were obtained. A SOCP relaxation was studied in [17], and it showed that the SOCP relaxation was weak-
er than the SDP relaxation but had nice properties which made it useful as a problem preprocessor.

Canonical duality theory developed from nonconvex analysis and global optimization is an effective methodology [5],
which has been used successfully for solving a large class of challenging problems in various disciplines, such as computa-
tional biology [20], large deformation mechanics [8,15], FIR filter design [19], and nonlinear dynamical systems [14]. In [6],
the canonical duality theory for the sum of fourth-order polynomials minimization problems was established, and it showed
that if the dual solution is in the feasible space S/, the corresponding primal solution can be obtained easily by the canonical
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equilibrium equation. In this paper, we present a general canonical primal-dual algorithm for more challenging problems
where, the canonical dual may have no critical point in S;. A quadratic perturbation approach is introduced to further opti-
mize the problem through a primal-dual iterative method, and then a gradient-based algorithm is continued to refine the
solution. The canonical primal-dual algorithm is tested on a set of benchmark polynomials and some instances of a sensor
network localization problem. Experimental results have testified the effectiveness of the proposed algorithm.

2. Problem and canonical duality theory

For the completeness of this paper, we first present a brief review on the canonical dual methodology for solving the fol-
lowing fourth-order polynomials minimization problem (primal problem for short)

(P) : min {P(x) =W(x) +%xTQx —X'f:.xc R”}, (1)
where,
m 1 1 r - 2
(x) = Zj“k (jx AI<X+ka+Ck> (2)
k=1

and Ay = AZ, Q = Q" € R™" are indefinite symmetrical matrices, by, f € R" are given vectors, o, ¢, € R are known constants.
Without loss of much generality, the oy is assumed to be positive.
By introducing a nonlinear operator

1 m
&= (51,...,g“m)T =Ax) = {ixTAkx-s—bzx-s—ck} ‘R"— &£, CR™, (3)

the nonconvex function W(x) can be recast by
W(x) = V(A(x)), (4)

where, V(¢) is a quadratic function defined by

m 1 5
=D _sud =5a(£0d), (5)
k=1
in which, & = (at1,...,04,)", the notation so t = (S1t1, ..., Smtm)” denotes the Hadamard product for any two vectors s, t € R™.

Remark 1. According to the canonical duality theory, the quadratic function V(&) is said to be a canonical function if its
domain & is a convex set. This requires that the nonlinear mapping A : R" — &, should be a so-called geometrically admissible
measure. Particularly, A(x) is an objective measure if Ay =0, by =0, Vk=1,...,m (see Definition 6.1.2 in [4] for the
objectivity in continuum physics).

In this paper, we assume that A(x) is simply a geometrical measure such that &, is a convex set in R™. Then, the primal
problem can be rewritten as the canonical form:

min{P(x) = V(A(x)) - U(x)}, 6)

where, U(x) = —1xTQx + x'f.
The dual variable ¢ to ¢ is defined by the duality mapping

g:(gh'"?gm):Vv(f):aoézgﬂ*}gzCRm' (7
For the given canonical function V(¢), its Legendre conjugate V*(g) can be defined by:
m
. 1
Vi(e) =sta{e's - V(©) =D _5%'cth ®)
k=1

where, sta{-} stands for finding stationary point of the statement in {-}. The (&, g) forms a canonical duality pair and the fol-
lowing canonical duality relations hold on &, x &;:

§=VV(§) = E=VV' () = V(O +V'(g) =¢&c. 9)
Obviously, we have the following reverse Legendre conjugate
V(A®)) = max{A®)'s - V'(g)ls € &} (10)

By substituting (10) into (6), problem (7) can be equivalent to
mxinm;ax{E(x., Q)xe R ge &}, (11)
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where, (X, ) is the generalized (or total) complementary function defined by

_ : : g
=) = A5 - V'(§) - U = 3¥'Glo - wFe) + 3 (e~ 57 ). (12)
k=1
here,
=Q+ ZQkAh Fe)=f - ngbk- (13)
k=1 k=1

For a given ¢ € &, the criticality condition V,E(X,¢) leads to the canonical equilibrium equation:
G(g)x = F(g). (14)

Solving this linear equation for x and substituting the result back to the total complementary function Z(x, g), we obtain
the canonical dual function

i 1 _ 1 _
P'(e) = ;(ckck > uk‘ci) - 5P 6 ©F(). (15)
By introducing the following canonical dual feasible space

Sa ={s € &lG(g) - 0}, (16)
the canonical dual problem can be formulated by

(P%) : max {Pd(g): ce s;}. (17)

Theorem 1. The problem (P%) is canonically dual to the primal problem (P) in the sense that if ¢ is a critical point of (P%), then the
vector

x=G(QF@) (18)
is a critical point of (P) and
P(x) = P(5). (19)
Furthermore, If G € S, then X is a global minimizer of (P) if and only if G is a global maximizer of (P?), i.e.,
P(x) = minP(x) <= maxP’(g) = P*(3). (20)
XeR" gesy

Proof. The first part of this theorem is the so-called complementary-dual principle proposed by Gao in [3]. Here we need to
prove the convexity of S;. For any given ¢;,¢, € S}, we should have

0G(gy) =0, (1-0)G(g,) =0 VOe€]0,1].
Therefore,
0G(61) + (1 = 0)G(g;) = G(0g; + (1 = 0)g;) = 0 VO €[0,1].

This shows that S is convex.

By the fact that the total complementary function E(x,g) is a saddle function on R" x S/, the classical saddle min-max
duality theory (cf. [2, page 57] or [4, page 39]) leads to

min P(x) = minmaxZ(x, g) = maxminZ(x,¢) = maxP’(g).
XeR" geSt ceS, XeR" ceSy

Therefore, by the complementary-dual principle, the critical point X € R" of E is a global min of P(x) if and only if the
associated critical point ¢ is a global max of P4(g) on S;. Since E(x,¢) is strictly convex in x and concave in ¢ on R" x S/,
its saddle point is unique. O

The statement (20) is the so-called canonical min-max duality, which is the first part of the triality theory originally dis-
covered in Gao and Strang’s 1989 paper [7] theorem shows that the canonical dual problem is a concave maximization over a
convex set and the condition G(g) = 0 in S; provides a global optimality criterion for the nonconvex primal problem. By the
fact that the canonical dual function P*(g) is concave on the convex domain 8., this canonical dual can be solved easily by
well-developed nonlinear optimization techniques, say, the SDP method. To see this, we first relax (P%) to
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: T
min {g; +&, - ¢ ¢},

st > 5P 96 Q).

1 . _
8, = EQT[Dlag{al,...,am}] 's

G(g) = 0. (21)
Then, by using the Schur complement Lemma [1], we have
min {g, +g&, —¢'c},
Gle) F(9)
s.t. r =0
F) 2g
Diag{ay, ..., tn G
( (2o o) )zo, (22)
¢ 28,
which is a typical semi-definite programming problem.
If the canonical dual solution is an interior point of S, then it must be a critical point of P!(c) and the associated

X = G '(S)F(Q) is the unique global minimizer of the primal problem. Otherwise, this X is only a lower bound solution to
the primal problem.

3. Canonical primal-dual algorithm

In this section, we shall address a critical question in the canonical duality theory: how to solve the nonconvex problem
(P) if its canonical dual problem (79) has no interior critical point in S, ? Clearly, if P(g) has no critical point § € int St its
critical point could be either on the boundary of S} or located in the out side of S;. In order to solve this problem, we use the
quadratic perturbation method by introducing a positive parameter 5, > 0 and let

- - 5 1 ¢ 5
Es(2.6) = BX,0) + 5 %~ Xe[* = 587Gy, ()% — ¥'Fy (6) + ) (ckck 5% ck) 5 A
k=1

where,
G (§) = G(G) +ail,  Fy (S) = F(G) + 0iXi.
Thus, the original dual feasible space S/ can be relaxed to
S, = {6 € &Gy (6) - 0}

Clearly, we have S; c Sgk V&, > 0. Therefore, for each given 6, and xy, the perturbed canonical dual problem can be pro-
posed as

(%%g%%©—2@%;%w>;ﬂ@ﬂ©%@} (23)

L k=1

k

Based on this perturbed problem, the following canonical primal-dual algorithm can be proposed for solving the noncon-
vex problem (P).

Algorithm 1 (Canonical primal-dual algorithm). Given initial data 69 > 0, %9 € R", and error allowance € > 0, let k = 0

1. Solve the perturbed canonical dual problem (Pd ) to obtain g, € S
2. Compute Xy;1 = [G;, (gk)]’ Fs,(cy) and let
X1 = X+ Pr(Xis1 — Xi), P € 10,1].
3. If |P(%ks1 — P(2k)| < €, then stop, X1 is the optimal solution. Otherwise, let k = k + 1, go back to step 1.

In this algorithm, {g,} € [0,1] are given parameters, which change the search directions. Clearly, if g, =1, we have
X1 = §k+1~

Remark 2. It is easy to understand that if the perturbation parameter 6, — 0, then Z;, (%,¢) — E(x,¢). This shows that the
goal of the quadratic perturbation method is to find an alternative solution in the neighborhood of x;.

Based on this algorithm, the whole pseudocode of the canonical primal-dual algorithm can be described as
follows:
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1: Go1q < canonical_dual (o, A, b, c,Q,f, m,n)

2:if G(gyy) >~ O then

30 Ko — G (Soia)F(Soia)

4:  P(X,q) < canonical_primal(x,4,,A,b,c,Q,f, m,n)

5: else

6: repeat

7: Gnew — canonical_dual(dy,x,4, 2, A, b, c,Q,f, m,n)

8: Xnew G{;: (Snew)Fsi (Gnew)

9: P(Xpew) < canonical_primal(xpew, o, A, b, c,Q,f,m,n)
10: if || P(Xnew) — P(Xoiq) || < € O [|Xnew — Xoiq| < € then
11: break

12: else

13: O — 5/{/2

14: Xold < Xnew

15: P(Xo14) < P(Xnew)

16: end if

17: until the maximum number of iterations is met
18: end if

19: [Xout, P(Xour)] < gradient_based(@(x)canonical_primal(x, o, A, b, ¢, Q,f, m), Xpew)

where, o(1) =o04,...,0(m) = o4y; A{1} = As,...,A{m} =An; b{1} =bq,...,b{m} =bn; c(1) =c1,...,c(m) = cp; the func-
tion canonical_primal is to calculate the objectives of the primal problem (P); the function canonical_dual is for the implemen-
tation of solving the canonical dual problem (7%) or (P‘jk), and gradient_based can be regarded as the refinement of the
proximal point method.

4. Application for benchmark problems

The proposed canonical primal-dual algorithm is implemented in MATLAB R2010b on Intel (R) Core (TM) i3-2310 M CPU
@2.10 GHz under Window 7 environment. For the SDP subproblem, a software package named SeDuMi [16] is used in this
study, and the built-in function fminunc in MATLAB is adopted to represent the gradient-based method.

4.1. Benchmark functions

We first list some of well-known benchmark functions:
Colville function:

fi =100(x, fx%)z +(1 —xl)z +90(x4 fxg)z +(1 —x3)2 +10.1((xy — 1)2 + (Xq — 1)2) +19.8(x; — 1)(x4 — 1).
Zettle function:
fo= (X +x2—2x;)" +0.25x;.

Extended Styblinski-Tang function:
] n
f3 =5 (X —16x} +5x)).
-

Rosenbrock function:

fi = ST11000x,, )+ (x— 1],

1:

—_

Il
—_

Dixon & Price function:

f5 = (X1 — ])2 + il(lez —Xi,1)2.

i—2
4.2. Experimental results

Test results for the Colville and Zettle problems are given in Table 1. We can find that the iterations are both 1, which
indicates that these two problems can be solved directly without the proximal point method. Table 2 gives the experimental
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Table 1
Experimental results for the Colville and Zettle problems.
Functions X" P(x*) Iterations Time (s)
fi (1,1,1,1) 1.7699e-10 1 0.640260
f (—0.0299,0) —0.0038 1 0.649753
Table 2
Experimental results for the Extended Styblinski-Tang problem.
n x* P(x*) Iterations Time (s)
2 (-2.9035,-2.9035) —78.3323 1 0.606217
5 (-2.9035,...,-2.9035) —195.8308 1 0.666961
10 (-2.9035,...,-2.9035) —391.6617 1 0.669273
20 (-2.9035,...,-2.9035) —783.3233 1 0.777645
50 (-2.9035,...,-2.9035) —1.9583e3 1 1.441296
100 (-2.9035,...,-2.9035) —3.9166e3 1 4.709524

-2.9035
-2.9035
-2.9035
-2.9035
-2.9035
-2.9035
-2.9035
-2.9035
-2.9035
-2.9035
-2.9035
-2.9035
-2.9035
-2.9035
-2.9035
-2.9035
-2.9035
-2.9035
-2.9035
-2.9035

fmin =

-783.3233

iter =

Elapsed time is 0.777645 seconds.
fe s> |

Fig. 1. Computational results for the Extended Styblinski-Tang function (n = 20).

results for the Extended Styblinski-Tang problem, and Fig. 1 gives the output results for the problem when n = 20. We can
find that if the size of problem is less than 10, the difference of time consuming is trivial. Experimental results for the Rosen-
brock and Dixon & Price problems are given in Tables 3 and 4, respectively. It is easy to find that when the size of problem is
small, few proximal point iterations are needed, but it requires more iterations when the size is larger.
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Table 3
Experimental results for the Rosenbrock problem.
n x P(x*) Iterations Time (s)
2 1,1) 2.0051e—11 2 0.705291
5 (1,...,1) 1.1091e-11 2 0.738990
10 (1,...,1) 5.8661e—11 2 0.872011
20 (1,...,1) 6.2422e-10 2 1.222506
50 (1,...,1) 8.2778e—11 2 3.315423
100 (1,...,1) 9.3099e-8 3 9.855752
Table 4
Experimental results for the Dixon & Price problem.
n 'S P(x*) Iterations Time (s)
2 (1,0.7071) 4.7740e—-15 2 0.658417
5 (1,0.7071,0.5946,0.5453,0.5221) 3.9968e—-15 2 0.729285
10 (1,0.7071,...,0.5014,0.5007) 5.1454e—-12 2 0.773957
20 (1,0.7071,...,0.5000,0.5000) 8.3509e—-10 3 1.063605
50 (1,0.7071,...,0.5000,0.5000) 1.0772e-10 3 6.032329
100 (1,0.7071,...,0.5000,0.5000) 6.0383e—-9 3 15.031212
0,1 (L1 0,1 (LD
~_
V5
2 4
2
V5
(0,0) (1,0) (0,0) (1,0)
(a) (b)
Fig. 2. Network topology for the motivating examples.
5. Application for the sensor network localization
The sensor network localization problem can be described as follows. Given m anchor points a;, - - -, a,, € R (d is usually 2

or 3), the distance d; (Euclidean distance) between the ith and jth anchor points if (i,j) € Ny, and the distance e; between the
ith sensor and kth anchor points if (i,k) € Nq, where, Ny = {(i,j) : [|% — &j|| = dj <14} and Nq = {(i,k) : [|% — ax| = ex < 1a},

here, r, is the radio range, the sensor network localization problem is to find n distinct sensor points x;, i = 1,...,n, such that
2 2 .
1% — %j[|° = djj, V(i.j) € Ny,
2 .
% — ay || = e, V(ik) € Na. (24)

Usually, the distance dj;, e; may contain noise, leading the Eq. (24) infeasible; therefore, using the least squares method,
we can formulate it to the following nonconvex optimization problem

; 2 2,2 2 2.2
min 3 (%= —dp) + > (% - @ - ef)” (25)
(i.j)eNx (i,k)ENg
Suppose that the number of existing edges between every pair of two sensor points, and between every pair of anchor and
sensor points are 1, and n,, respectively. Denote ¥ = [X11,X12, ..., Xi1,Xi2, - - - ,x,,l,xnz}T € R*" (d = 2), then

2 2 1
(1% = %[1* — i) = (X —x70)" + (X2 — X2)" — dfj = 5 X"AX + bix +
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Table 5
Known data for the motivating examples.
Instances Anchor points Distances
(a) a; =(0,0), a; = (0,1), a5 = (1,0), as = (1,1) dip =05, e;; =43, 912—‘/5, ey = Y3, e24:§
(b) a; =(0,0), a; = (0,1), a3 = (1,0), as = (1,1) di; =05, ey =%, e;3 =%, en:%? e =%

where, A; € R*™2" js a sparse symmetric matrix with
A2i—1,2i 1) =2, A(2j— 1,2 — 1) = 2, A(20,2i) =2, A(2],2)) =2, A(2i — 1,2 — 1) = —2,
-2, A(2i,2)) =

As(zjf
(Ilxi — > —

where, A; €

A2 —

1,2i-1) =

€j) =

1,2 1)

Table 6

Experimental results for 10 sensors and 4 anchors.

True solutions

Solutions by the Proposed algorithm

x; = (0.8179,0.9675) 0.8184,0.9668)
x; = (0.7907,0.0915) xz = (0.7903,0.0913)
x; = (0.3421,0.4704) 0.3416,0.4705)
x;, = (0.9365,0.1694) 0.9363,0.1693)
x; = (0.5058,0.2568) xs = 0 5060, 0.2576)
x; = (0.3008,0.7197) Xs = (0.3007,0.7201)
x5 = (0.8456,0.6711) Xx; = (0.8456,0.6709)
x5 = (0.4286,0.7408) Xg = (0.4284,0.7407)
x5 = (0.0698,0.6631) X9 = (0.0691,0.6624)
x;, = (0.1757,0.7560) X10 = (0.1751,0.7563)
Table 7

Experimental results for 20 sensors and 4 anchors.

True solutions

Solutions by the Proposed algorithm

X! = (0.8179,0.9675)
x; = (0.7907,0.0915)
Xy = (0.3421,0.4704)
x; = (0.9365,0.1694)
x; = (0.5058,0.2568)
x: = (0.3008,0.7197)
x; = (0.8456,0.6711)
x; = (0.4286,0.7408)
x, = (0.0698,0.6631)
X1, = (0.1757,0.7560
x;; = (0.6441,0.9545

)
)
x;, = (0.5325,0.2370)
x;, = (0.6727,0.7358)
x;, = (0.1614,0.2264)
;5 = (0.7012,0.5950)
;s = (0.8939,0.4577)
x;, = (0.7856,0.7407)
xig = (0.7764,0.4873)
x5 = (0.3702,0.2146)
X3, = (0.1967,0.2493)

0.8174,0.9679)

xz = (0.7908,0.0918)

X4*
X5 =

0.3420,0.4704)
0.9369,0.1699)
0.5058, 0.2565)

Xs = (0.3003,0.7197)

Xy =
Xg =
X9 =

=
(
=
(
(
(
(
(
(

0.8456,0.6714)
0.4283,0.7406)
0.0697,0.6632)

%10 = (0.1759,0.7560
%1 = (0.6437,0.9544

X1 =
X3 =
X4 =
X5 =
X6 =
X7 =
Xig =
Xig =
X0 =

)
)
0.5325,0.2374)
0.6723,0.7360)
0.1612,0.2268)
0.7008,0.5954)
0.8939,0.4582)
0.7852,0.7408)
0.7759,0.4876)
0.3698,0.2145)
0.1966,0.2495)

2
(i1 — aa)* + (X2 — Q) —

R?™2" js a sparse symmetric matrix with

=2, Ad(2i,2i) =2,

b, € R*" is a sparse vector with

be(2i -~ 1,1) = ~2ay,

and ¢, = a2, +az, —

2
€.

be(2i,1) = —2a,

2, Al(2).2i) =

-2, b;=0, ¢, =

2

—d?

ij

1
e2 = =x"AX+b/x+c
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061 Sensor (true)
*  Sensor (estimate)
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0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Fig. 3. Computed locations of 10 sensors and 4 anchors.

091 i

0.8} b

07 1

Sensor (true)
0.6} ) ® _
% Sensor (estimate)

o.l = 1 1 1 1 1 1 *| 1 =
0.l 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Fig. 4. Computed locations of 20 sensors and 4 anchors.

Then the optimization problem can be unified as the fourth-order type:
Ny 1 2 Ng ‘l 2
mxinz (szAsx +blx+ cs> + Z <§xTAtX +blx+ Ct> )
s=1 t=1

5.1. Motivating examples

Considering the following two motivating examples with the network topology given in Fig. 2(a) and (b), respectively. The
data for these problems are given in Table 5.

By using the proposed canonical primal-dual algorithm, for both examples, in the 1st iteration, we can get
¢ =1.0e—5(0.1538,...,0.1538)". Through Cholesky factorization, we can find that G;(g) = 0 (i = 1,2) is positive definite,
and the corresponding ®; = G;' (§)F1(g) = (0.25,0.5,0.75,0.5)", X, = G, ' (§)F2(§) = (0.5,0.25,0.5,0.75)".

Remark 3. The ¢ is small but valid due to the perturbed complementary slackness in primal-dual interior point method
used in SeDuMi.



X. Zhou et al./ Applied Mathematics and Computation 227 (2014) 246-255 255
5.2. Other instances

Two other instances are randomly created by SFSDP [11], a MATLAB package for solving sensor network localization prob-
lems. The first one is a 10 sensors and 4 anchors problem with the radio range at 1, and the second problem is a 20 sensors
and 4 anchors problem with the radio range at 0.5. For both problems, the positions of 4 anchors are the same, and they are
a; = (0,0), a, =(0,1), a; = (1,0), a4 = (1,1). Some noises are added in both problems with the noisy factor at 0.001. And
the following root mean square distance is used to measure the accuracy of the locations of estimated sensors:

1.
RMSD =% || — %,
i=1

where, X; and x; are the estimated and true positions, respectively.

Experimental results are given in Tables 6 and 7, respectively. For the problem with 10 sensors and 4 anchors, the RMSD is
1.8943e—4, while for the problem with 20 sensors and 4 anchors, the RMSD is 9.6689e—5. The corresponding computed loca-
tions are illustrated in Figs. 3 and 4, respectively. We can find that the computed locations can coincide with the true
locations.
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